Work Function Algorithm with a Moving Window for Solving the On-line k-server Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A fast implementation of the optimal off-line algorithm for solving the k-server problem

The optimal off-line algorithm for solving the k-server problem is usually implemented by network flows. In this paper, we first propose certain modifications to each step of the original network-flow implementation. Next, by experiments we demonstrate that the proposed modifications improve the speed of the algorithm. Finally, we investigate how similar ideas for improvement can also be applie...

متن کامل

On the Competitive Ratio of the Work Function Algorithm for the k-Server Problem

The k-server problem is one of the most fundamental online problems. The problem is to schedule k mobile servers to visit a sequence of points in a metric space with minimum total mileage. The k-server conjecture of Manasse, McGeogh, and Sleator states that there exists a k-competitive online algorithm. The conjecture has been open for over 15 years. The top candidate online algorithm for settl...

متن کامل

A randomized on-line algorithm for the k-server problem on a line

We give a O(n 2 3 logn)–competitive randomized k–server algorithm when the underlying metric space is given by n equally spaced points on a line. For n = k+o(k 3 2/ log k), this algorithm is o(k)–competitive.

متن کامل

Speeding up the optimal off-line algorithm for solving the k-server problem

In the k-server problem [6] one has to decide how k mobile servers should serve a sequence of requests. Each server occupies a location in a fixed, possibly infinite, metric space. Repeatedly, a new request appears at some location x. To serve the request, a corresponding algorithm must move a server to x unless it already has a server at that location. Whenever the algorithm moves a server fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computing and Information Technology

سال: 2007

ISSN: 1330-1136,1846-3908

DOI: 10.2498/cit.1001140